課程目錄:R語言機器學習學術應用培訓
4401 人關注
(78637/99817)
課程大綱:

          R語言機器學習學術應用培訓

 

 

 

R語言機器學習學術應用
基礎
Theory: Features of time series data and forecasting basics

R Lab: time series objects (libraries of timeSeries, xts, & mFilters)

中級
Statistical Learning (SL):

(0.5 Hour) One-step forecasting: one-step ahead model fit

(0.5 Hour) Multi-step forecasting: recursive and direct methods

(6 Hours) Linear models: ARIMAs, ETS, BATS, GAMS, Bagged; 案例實做與寫作范例

(5 hours) Nonlinear models: Neural Network, Smooth Transition, and AAR; 案例實做與寫作范例

R Lab: libraries of forecast, tyDyn, vars, and MSVAR.

Research Issues: unemployment forecasting, predictability of exchange rates and asset returns.

高級
Machine Learning (ML):

(3 Hours) Tree models and SVM (Support Vector Machine)

(6 Hours) Automatic ML for forecasting time series; 案例實做與寫作范例,涵蓋自動化演算6個機器學習方法:

(1) DRF (This includes both the Random Forest and Extremely Randomized Trees (XRT) models.)

(2) GLM

(3) XGBoost (XGBoost GBM)

(4) GBM (gradient boost machine)

(5) DeepLearning (Fully-connected multi-layer artificial neural network, not CNN/RNN LSTM)

(6) StackedEnsemble.

(6 Hours) Econometric machine learning- Causality by ML prediction; 案例實做與寫作范例

(3 Hours) Financial machine learning- Portfolio committees introduced; 案例實做與寫作范例

R Lab: libraries of h2o, kera, tensorflow.

Research issues: Granger causality, volatility forecasting, portfolio selection,

economic fundamentals of exchange rates

主站蜘蛛池模板: 99久久国产综合精品五月天喷水 | 狠狠色丁香婷婷综合尤物| 97久久婷婷五月综合色d啪蜜芽| 一本色道久久88—综合亚洲精品| 欧美亚洲综合免费精品高清在线观看| 婷婷五月综合色视频| 狠狠人妻久久久久久综合蜜桃| 一本大道久久a久久精品综合| 欧美大战日韩91综合一区婷婷久久青草| 激情综合婷婷色五月蜜桃| 婷婷成人丁香五月综合激情 | 国产香蕉尹人综合在线| 丁香五月婷婷综合激情在线| 欧美日韩综合精品| 婷婷五月综合缴情在线视频| 伊人yinren6综合网色狠狠| 亚洲国产综合精品中文字幕 | 色综合久久无码五十路人妻| 91精品国产综合久久精品| 激情五月综合网| 亚洲国产美国国产综合一区二区| 欧美精品综合视频一区二区| 亚洲欧美国产∧v精品综合网| 国产日韩欧美综合| 在线综合亚洲中文精品| 国内偷自视频区视频综合| 国产婷婷色综合AV蜜臀AV| 2020国产精品亚洲综合网 | 久久综合88熟人妻| 人人狠狠综合久久88成人| 狠狠色综合色区| 国产成人精品综合网站| 狠狠色综合网站久久久久久久| 久久综合久久综合九色| 亚洲国产综合精品中文第一区 | 亚洲色婷婷综合久久| 天天综合色天天综合色hd| 综合欧美亚洲日本| 亚洲欧美伊人久久综合一区二区 | 综合久久精品色| 亚洲乱码中文字幕综合|