課程目錄:R語言機器學習學術應用培訓
4401 人關注
(78637/99817)
課程大綱:

          R語言機器學習學術應用培訓

 

 

 

R語言機器學習學術應用
基礎
Theory: Features of time series data and forecasting basics

R Lab: time series objects (libraries of timeSeries, xts, & mFilters)

中級
Statistical Learning (SL):

(0.5 Hour) One-step forecasting: one-step ahead model fit

(0.5 Hour) Multi-step forecasting: recursive and direct methods

(6 Hours) Linear models: ARIMAs, ETS, BATS, GAMS, Bagged; 案例實做與寫作范例

(5 hours) Nonlinear models: Neural Network, Smooth Transition, and AAR; 案例實做與寫作范例

R Lab: libraries of forecast, tyDyn, vars, and MSVAR.

Research Issues: unemployment forecasting, predictability of exchange rates and asset returns.

高級
Machine Learning (ML):

(3 Hours) Tree models and SVM (Support Vector Machine)

(6 Hours) Automatic ML for forecasting time series; 案例實做與寫作范例,涵蓋自動化演算6個機器學習方法:

(1) DRF (This includes both the Random Forest and Extremely Randomized Trees (XRT) models.)

(2) GLM

(3) XGBoost (XGBoost GBM)

(4) GBM (gradient boost machine)

(5) DeepLearning (Fully-connected multi-layer artificial neural network, not CNN/RNN LSTM)

(6) StackedEnsemble.

(6 Hours) Econometric machine learning- Causality by ML prediction; 案例實做與寫作范例

(3 Hours) Financial machine learning- Portfolio committees introduced; 案例實做與寫作范例

R Lab: libraries of h2o, kera, tensorflow.

Research issues: Granger causality, volatility forecasting, portfolio selection,

economic fundamentals of exchange rates

主站蜘蛛池模板: 欧美日韩国产综合视频一区二区三区 | 激情五月综合综合久久69| 久久婷婷综合中文字幕| 色综合色狠狠天天综合色| 色综合色综合色综合| 色综合久久无码中文字幕| 色综合伊人色综合网站| 国产色婷婷精品综合在线| 亚洲伊人色欲综合网| 久久久久久青草大香综合精品| 综合五月激情五月开心婷婷| 伊人成年综合网| 一本色道久久综合狠狠躁篇| 区二区三区激情综合| 亚洲国产成人久久综合区| 天天综合久久一二三区| 亚洲国产精品综合久久一线 | 亚洲色欲久久久久综合网| 久久综合伊人77777| 欧美日韩国产综合视频在线看 | 久久婷婷色综合一区二区| 观看 国产综合久久久久鬼色 欧美 亚洲 一区二区 | 久久乐国产综合亚洲精品| 亚洲综合偷自成人网第页色| 一本色道久久综合狠狠躁篇| 狠狠色狠狠色综合曰曰| 亚洲国产一成久久精品国产成人综合| 色99久久久久高潮综合影院| AV狠狠色丁香婷婷综合久久| 五月激情综合网| 久久综合综合久久综合| 色噜噜狠狠色综合久| 久久综合久久综合久久| 成人亚洲综合天堂| 日韩亚洲欧美久久久www综合网| 亚洲乱码中文字幕综合234| 激情综合婷婷丁香五月蜜桃| 国产亚洲综合一区柠檬导航| 天天爽天天狠久久久综合麻豆| 色与欲影视天天看综合网| 国产综合成人色产三级高清在线精品发布|